2-AVOIDANCE

Murray Elder, UTS
Permutation Patterns in cyberspace 2020
Interactive video at
https://uts.h5p.com/content/1291033806121141429
Definition (2-containment 1,2)

Let σ be a permutation and $F, G \subseteq S^\infty$.

We say that σ 2-contains (F, G) if there exists $\gamma <_{\text{subperm}} \sigma$ such that
- $\text{red}(\gamma) \in F$ and
- there is no $\delta <_{\text{subperm}} \sigma$ such that $\gamma <_{\text{subperm}} \delta$ and $\text{red}(\delta) \in G$.

Informally we think of the set G as patterns which can potentially save a permutation from being forbidden by F.

Eg: 15234 2-contains (\{123\}, \{1423\})

$^{1}\text{red}(\alpha)$ — permutation obtained by replacing the ith smallest entry of α by the integer i

$^{2}S^{\infty}$ — set of all reduced permutations
A permutation 2-avoids \((F, G)\) if it does not 2-contain \((F, G)\). By propositional logic:

Definition (2-avoidance)

Let \(\sigma\) be a permutation and \(F, G \subseteq S^\infty\).

\(\sigma\) 2-avoids \((F, G)\) if for all \(\gamma \prec_{\text{subperm}} \sigma\), if \(\text{red}(\gamma) \in F\) then there exists \(\delta \prec_{\text{subperm}} \sigma\) such that \(\gamma \prec_{\text{subperm}} \delta\) and \(\text{red}(\delta) \in G\): \(\delta\) saves \(\gamma\).

Eg: 15423 2-avoids \((\{123\}, \{1423\})\)

We denote the set of all permutations in \(S^\infty\) which 2-avoid \((F, G)\) by \(\text{Av}_2(F, G)\).
$F = \{3241\}, G = \{41352\}$. Does the perm 2-contain or 2-avoid (F, G)?

- 143562

- 152463
$F = \{1\}, G = \{12, 21\}$. Then $\text{Av}_2(F, G) = S^\infty \setminus \{1\}$.

This shows that the growth of (proper) 2-avoidance sets can be factorial (in contrast to3)

Question: what growth rates are possible for 2-avoidance?

- super-exponential but sub-factorial?
- super-polynomial but sub-exponential? (in contrast to4)

Barred pattern avoidance:

A permutation avoids $4 \overline{1} 352$ means if it has any subsequence order isomorphic to 3241, that subsequence must be a part of a subsequence order isomorphic to 41352.

5. Deterministic pop stack: sorting device with two operations - push: move a token from the input to the top of the stack - pop: move the entire stack contents to the output - always push unless the token on the top of the stack is smaller in value than the token to be pushed from the input.
Theorem (Pudwell and Smith6)

The set of 2-pass pop stack sortable permutations is equal to

\[\text{Av}_B (\{2341, 3412, 3421, 4123, 4231, 4312, 3241, 41352, 41352\}) \]

If we were to characterise 3-pop stack sortable permutations as those avoiding some list containing $463\bar{1}572$ and $473\bar{1}562$, then we would be mistaken:

$473\bar{1}562$ does not avoid this list since it fails to avoid $463\bar{1}572$.
2-PASS AGAIN

Theorem (Pudwell and Smith)

The set of 2-pass pop stack sortable permutations is equal to

$\text{Av}_B (\{2341, 3412, 3421, 4123, 4231, 4312, 3241, 41352, 413\bar{5}2\})$

becomes

Theorem (Pudwell and Smith)

The set of 2-pass pop stack sortable permutations is equal to

$\text{Av}_2(\{2341, 3412, 3421, 4123, 4231, 4312, 3241, 4132\}, \{41352\})$
Theorem (E, Goh)

For each $k \in \mathbb{N}$ there exist finite sets $F_k, G_k \subseteq S^\infty$ such that σ is sortable by k-passes through a pop stack iff σ 2-avoids (F_k, G_k).

More details in Andrew’s talk tomorrow.

This\(^8\) answers Claesson and Guðmundsson’s\(^9\) question: is there a “useful permutation pattern characterization of the k-pop stack-sortable permutations”?

\(^7\) Elder and Goh, “k-pop stack sortable permutations and 2-avoidance”, 2019.

\(^8\) we think, if you like 2-avoidance

\(^9\) Claesson and Guðmundsson, “Enumerating permutations sortable by k passes through a pop-stack”, 2018.
THANKS