Self-dual intervals in the Bruhat order

Christian Gaetz and Yibo Gao
Massachusetts Institute of Technology

Smooth permutations
A permutation $w \in \mathfrak{S}_n$ is smooth if the corresponding Schubert variety X_w is smooth. The following characterization of smooth permutations is well-known.

Theorem ([1, 2])
The following are equivalent for $w \in \mathfrak{S}_n$:

1. The interval $[e, w]$ in the Bruhat order is rank-symmetric.
2. w avoids 3412 and 4231.
3. w is smooth.

Background and Notations on the Bruhat order
The (strong) Bruhat order on the symmetric group \mathfrak{S}_n is the transitive closure of $w \leq w't$, $\ell(w) = \ell(w't) + 1$ where t is the transposition $(i \ j)$ and ℓ denotes the number of inversions. There is a minimum $e = 12 \cdots n$ and a maximum $w_0 = n \cdots 1$ in the Bruhat order.

For $w \in \mathfrak{S}_n$, let P_w be a bipartite graph on $P_w^p \cup P_w^r$ and $P_{w_0}^p \cup P_{w_0}^r$ respectively with edges given by cover relations of the Bruhat order.

Let $\deg(u)$ be the number of $v \in [e, w]$ covering u, and $\deg_0(u)$ be the number of $v \in [e, w]$ covered by u.

Principal order ideals in the Bruhat order are known to be "top-heavy", described by the following theorem.

Theorem [3]
For $w \in \mathfrak{S}_n$ and $0 \leq k \leq \ell(w)/2$, $|P_w^p| \leq |P_{w_0}^p| - k$.

Self-dual intervals
A poset is self-dual if it admits an order-reversing bijection. Our main theorem is the following.

Theorem
The following are equivalent for $w \in \mathfrak{S}_n$:

1. The bipartite graphs P_w and P_w^r are isomorphic.
2. w avoids the smooth patterns 3412 and 4231 as well as 34521, 45321, 54123, and 54321;
3. w is polished (defined momentarily);
4. The interval $[e, w]$ in the Bruhat order is self-dual.

The equivalence of (1) and (4) is notable because self-duality of $[e, w]$ may be demonstrated by comparing only two pairs of ranks and coranks. For smoothness, Billey and Postnikov [4] conjecture that one must check that $|P_w^p| = |P_{w_0}^p|$ for around the first n pairs of ranks and coranks.

Theorem
Let $w \in \mathfrak{S}_n$ be smooth, then

$$\max_{u \in P_w^p} \deg_0(u) \leq \max_{u \in P_{w_0}^p} \deg(u),$$

with equality if and only if $[e, w]$ is self-dual.

Polished elements
Let (W, S) be a finite Coxeter system where W is the Coxeter group and S is the set of simple generators.

Definition
We say that $w \in W$ is polished if there exist pairwise disjoint subsets $S_1, \ldots, S_k \subset S$ such that each S_i is a connected subset of the Dynkin diagram and coverings $S_i = J_i \cup J_f'$ for $i = 1, \ldots, k$ with $J_i \cap J_f'$ totally disconnected so that $w = \prod_{i=1}^k u_i w_i(j_i \cap J_f') w_i(j_f')$ where the product is taken from left to right as $i = 1, 2, \ldots, k$.

Note that if the J_i's are reordered, we obtain a possibly different polished element.

The following open questions are natural to ask:

- If $[e, w]$ is self-dual, is w polished?
- Are the conditions in (1) and (4) equivalent?
- Is there a geometric interpretation for self-duality (even in type A_2)?

Discussion and open problems
We showed that the implication $(3) \Rightarrow (4)$ (w being polished implies that $[e, w]$ is self-dual) holds for any finite Coxeter group, while $(1) \Rightarrow (4)$ does not hold in general.

We are grateful to Sara Billey for suggesting that self-dual intervals may be characterized by pattern avoidance. We also wish to thank Alexander Woo for providing helpful references and Alexander Postnikov and Thomas Lam for their suggestions.

References

Acknowledgements

We are grateful to Sara Billey for suggesting that self-dual intervals may be characterized by pattern avoidance. We also wish to thank Alexander Woo for providing helpful references and Alexander Postnikov and Thomas Lam for their suggestions.

Contact Information

• Email: gaetz@mit.edu, gaojibo@mit.edu

Figure 1: The bipartite graph P_{23145} (top) and P_{24132} (bottom). Note that $\max_{u \in P_{23145}} \deg_0(u) = 5$ and $\max_{u \in P_{24132}} \deg_0(u) = 6$ in P_{23145} and P_{24132} are not isomorphic.

Figure 2: A polished element in type A_4. The duality map
Notice that if $[e, w] = [e, w'] \times [e, w'']$ if $w = w'w''$ for w' and w'' living in disjoint parabolic subgroups. So to produce the duality map, it suffices to assume that $w = \prod_{i=1}^k u_i w_i(j_i \cap J_f') w_i(j_f')$ such that $J_i \cap J_f'$ is totally disconnected (any two simple generators commute).

This map is given by $u \mapsto u':= w_1 W_1 w_2 (J_f \cap J') w_1 w_2 (J_f')$ where $w = u' w_1$. u is the parabolic decomposition.