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What is the principal Möbius function?

Notation: A closed interval [1, π] is the set {τ : τ ≤ π}, and a half-open
interval [1, π) is the set {τ : τ < π}.

The principal Möbius function µ[π] is defined on the permutation poset as

µ[π] =

1 if π = 1,

−
∑

λ∈[1,π)
µ[λ] otherwise

1243

123 132

12 21

1

= 1

= −1 = −1

= 0 = 1

= 0

If π 6= 1, then
∑
[1,π]

µ[λ] = 0.
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. . . and what are opposing adjacencies?

3 7 8 2 4 10 9 1 5 6

We have opposing adjacencies when we have an interval isomorphic to 12 (an
up-adjacency), and an interval isomorphic to 21 (a down-adjacency).
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Opposing adjacencies

Theorem (Brignall et al. 2018+)
If a permutation π has opposing adjacencies, then µ[π] = 0.

• We use induction.
• The base case is µ[1243] = 0.
• Assume that the theorem is true for all permutations with length < n.

Choose a permutation of length n with opposing adjacencies,
• Choose an up-adjacency and a down-adjacency.
• Construct three permutations:

I λ, where we replace the left adjacency (of the two chosen) with a single
point.

I ρ, where we replace the right adjacency with a single point.
I γ, where we replace both adjacencies with single points.

• Use these permutations to split the poset into five (overlapping) subsets,
then use inclusion-exclusion.
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Opposing adjacencies

346215
π

23514345213421535214

1243234123142413342132144213

123132231213312321

1221

1

23514
ρ

35214
λ

2413
γ

L R

T

L = [1, λ], R = [1, ρ], T = [1, π) \ (L ∪ R), G = [1, γ], X = (L ∩ R) \ G

µ[π] = −
∑

τ∈[1,π)

µ[τ ] = −
∑
τ∈L

µ[τ ]−
∑
τ∈R

µ[τ ]−
∑
τ∈T

µ[τ ] +
∑
τ∈G

µ[τ ] +
∑
τ∈X

µ[τ ]

• L = [1, λ], R = [1, ρ], and G = [1, γ] are closed intervals.

• Every permutation in T = [1, π) \ (L ∪ R) or X = (L ∩ R) \ G has an opposing
adjacency.
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Proportion of permutations where µ[π] = 0

Theorem (Brignall et al. 2018+)
The proportion of permutations of length n where the principal Möbius
function is zero, Z(n), is, asymptotically, bounded below by 0.3995.

• As n→∞

Z(n) ≥
bn/2c∑
k=2

1
n!
(n− k)!

e2

(
n− k

k

)
(2k − 2).

And taking k = 2, . . . , 9, we obtain:
•

Z(n) ≥
9∑

k=2

1
n!
(n− k)!

e2

(
n− k

k

)
(2k − 2) > 0.3995

• Jelínek, Kantor, Kync̆l and Tancer have

Z(n) ≥
(

1− 1
e

)2

> 0.3995
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Proportion of permutations where µ[π] = 0

What about an upper bound?

Length Z(n)

3 0.3333
4 0.4167
5 0.4833
6 0.5361
7 0.5742

Length Z(n)

8 0.5942
9 0.6019
10 0.6040
11 0.6034
12 0.6021

Conjecture
The proportion of permutations that have principal Möbius function value
equal to zero is bounded above by Z(10) u 0.6040.

Figures were independently calculated by Jason Smith and by M.
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3 0.3333
4 0.4167
5 0.4833
6 0.5361
7 0.5742

Length Z(n)

8 0.5942
9 0.6019
10 0.6040
11 0.6034
12 0.6021

Conjecture
The proportion of permutations that have principal Möbius function value
equal to zero is bounded above by Z(10) u 0.6040.

Figures were independently calculated by Jason Smith and by M.



Future directions

• An upper bound for Z(n).
• Does a limit exist for Z(n)?
• And if a limit does exist, what is it?
• What about permutations that have multiple non-opposing adjacencies?
• We know that some permutations with multiple non-opposing

adjacencies have a non-zero principal Möbius function value, so we need
a criteria to exclude these.



Finally. . .

Thank you!
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